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Abstnct. A new theoretical model for the description of particle shape distributions is 
suggested. Within its framework a complex Fourier representation of particle shape is used. 
A frequency distribution expressing the contributions of the different complex harmonics 
to the dispersion of a position vector is defined. We assume that particles with different 
shapes are generated during a scale-invariant fragmentation process. Starting from an 
arbitrary shape distribution the fragmentation leads to a succession of different shape 
distributions. The asymptotic behaviour ofthis sequence is analysed by means ofa stochastic 
renormalization approach. Two different scaling laws are found. One scaling law describes 
the behaviour of the moments of amplitudes attached to the Fourier representation of 
particle shape, whereas the other corresponds to the renormalized sire distribution. In 
particular, we give a theoretical derivation ofthe empirical law of morphological coefficients 
discovered by Meloy. A physical interpretation of the scaling conditions is given based on 
a many-particle branched-chain approach. We suggest that the scaling behaviour is mainly 
due to the time-homogeneous Markovian ~ t m c t ~ r e  ofthe many-particle evolution equations. 

1. Formulation of the problem 

Acommon approach to the morphological analysis of particle shape consists of tracing 
the contour of one of its sections using a ray originating from a fixed point and by 
recording the length r of the ray as a function of the angle 0 relative to a fixed position: 

r = r(  8 ) .  (10) 

The contour is a closed curve and thus the function r ( 0 )  has a period equal to 2 ~ .  
We can represent r ( 0 )  as a Fourier series: 

.. 
r (B)=A,+ 1 A. cos(nO+xy.). 

m = ,  

We should outline that such a representation of a contour is always possible. For 
instance, by displacing the origin with a length r, along a direction characterized by 
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the angle eo the shape profile may be represented as 

The dependence rI = r , ( e )  is also periodic. Thus, a Fourier representation is still 
possible, with the difference that the corresponding Fourier coefficients have different 
numerical values. 

Meloy showed that a graphical representation of In A. versus In n approximates 
to a straight line (Meloy 1978): 

In A. = g  In n +  h. (3) 
Equation (3) is known as 'Meloy's law of morphological coefficients'. It is satisfied by 
a relatively large class of particle shapes encountered in nature. Its range of validity 
is extended when we consider ensembles of particles having the same provenance 
(Beddow and Meloy 1980, Carmichael 1982, Clark 1981, Bandemer e t a /  1985). In this 

coefficients g and h determined from a sample of 'representative' particles may be 
used to characterize the whole particle collective. This method is commonly used in 
applied stereology. 

In spite of its practical utility, a satisfactory theoretical explanation of Meloy's law 
is still missing. Vlad (1988) tried to obtain equation (3) as an extrema1 law which 
optimizes a certain informational entropy function. Unfortunately, equation (3) corres- 
ponds to a less-common isoperimetric condition which has no clear physical sig- 
nificance. The purpose of this paper is to give a plausible physical interpretation of 
Meloy's law. Our main assumption is that this law expresses in fact a scaling condition 
for an ensemble of particles having different individual shapes but which are the result 
of the same type of multifragmentation processes. In developing such an approach a 
clear distinction should be made between the measurement process aimed at by the 
Fourier method and the fragmentation process itself. In this context the fragmentation 
theory is not used to illustrate, but is merely a fundamental tool. 

Fragmentation processes have long been studied in specialized areas of science 
and technology, but quite recently a more general interest has appeared, with new 
approaches of potentially wider applicability being proposed (see Cheng and Redner 
1990, Cai et al 1991, Mekjian 1990, Lee and Mekjian 1990, and references therein). 
The mathematical description of multifragmentation processes is not easy. We distin- 
guish the following aspects. When we are interested in the number of particles generated 
by a succession of multifragmentation events we can use the theory of branched-chain 
processes (Athreya and Ney 1972, Vere-Jones 1977). However, this theory cannot be 
used to evaluate the statistical properties of particle shape. A possible solution would 
be to combine the theory of branched chains with the theory of multiplicative random 
wairs. inis reaas 10 a very cotilpiicaied modei which caiiiioi be ireaied iii ihe genera: 
case. Fortunately, we are not interested here in the evaluation of the statistical properties 
of the number of particles. This fact allows for a simplified description. By considering 
the offspring generated by an initial particle we shall analyse only a branch of the 
corresponding 'genealogical tree'. We mention that a similar simplified description has 
been used in connection with the problem of turbulent flow (Eggers and Grossmann 
1991). The behaviour of this branch will be described in terms of a multiplicative 
random process. The main advantage of the theory of multiplicative processes is that 
it allows a simple description of self-similarity. Rather than trying to develop a detailed 
specific model, we shall assume the validity of self-similarity as the main feature of 

^^^^ .I.̂ *..-""--..A:-- -...-,:...A"" --- ---,....-A I__. ..-. ..-- n. 
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many fragmentation theories (Cheng and Redner 1990, Cai et al 1991, Mekjian 1990, 
Lee and Mekjian 1990). 

The plan of the paper is as follows. First we shall introduce a complex Fourier 
representation of particle shape and discuss the behaviour of complex Fourier ampli- 
tudes. A stochastic renormalization approach will be introduced by assuming that the 
number of fragmentation events is distributed according to a geometrical law. Further, 
we shall analyse the particle size scaling. We shall also try to make a connection 
between our approach and many-particle fragmentation dynamics; a full branched- 
chain description will be used. By generalizing the fragmentation theory of Vlad (1991) 
to include the particle shape we shall recover the one-particle theory as a particular 
case. On this basis a physical interpretation of the scaling behaviour will be given. As 
a final topic we shall discuss some drawbacks and open problems related to our 
approach. 

2. A complex Fourier representation of particle shape 

We shall represent the shape of a given particle by a complex Fourier series: 
tm 

r(8) = C, exp(in8) C, = ( 2 ~ ) - '  jo2m r(8) exp(-in8) do. (4) 
-m 

The amplitudes A. from equation (2) are equal simply to A,, = 2lCJ By using equation 
(4) we can evaluate the mean and the dispersion of the ray corresponding to a given 
shape. We get 

;=(2n)-' ~ 0 2 ' r ( 8 ) d 8 = C o  (5 )  

and 

Taking equation (6) into account we can introduce the frequency distribution 

P,, =2/c*12/u2 n = 1,2, .  . . (70) 
which obviously fulfils the conditions 

m 

P.30 P,=l. (76) 

P, expresses the contribution of the nth harmonic C-, exp(-inO)+C. exp(in8) to u2. 
We note that we can ascribe a probabilistic interpretation similar to the interpretation 
of wavefunctions in quantum mechanics to the square modulus of amplitude lCJ2. 

We shall assume that each fragmentation step is scale-invariant. The shape rq(8) 
of a particle resulting from the qth fragmentation process is random. It depends on 
the shape rq-l(8) of its ancestor as well as on other random factors which fulfil the 
condition of scale invariance. A simple choice would be to consider that r(8) is a 
superposition of self-affine transformations of the shape of the ancestor, 

" = I  

rdfV--&rq-dN,8), P2rq-I(N2V,.  . . (8) 
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where PI and NI are random variables selected from a certain probability law. The 
different realizations PI,  NI corresponding to different steps may differ. However, the 
scale invariance requires that the probability law should have the same form for all 
steps. Although PI and N, are random, they are not completely arbitrary. As the size 
of a fragment is less than the size of its ancestor, p should be less than unity. In 
contrast, as each particle contour is closed we have pr,-,(NB) =pr9-,[N(Bf2n)]. 
But r9 and rq-, have the period 27r and therefore N should be an integer. The value 
N = 0 is excluded, as it leads to a circular shape irrespective of the shape of ancestors. 
As the shapes corresponding to - N and + N are identical, we shall consider only the 
positive values of N.  By inserting the Fourier representations of r,_l(@) and rJ6) into 
equation (8) we get a recurrence equation for the values of the Fourier coefficients 

cL9) = xp6in,N)in)c$-'). (9) 
" '  

Equation (9) may be used to derive a chain of equations for the moments of the square 
modulus (IC(Ri1Zm). Denoting by c N ( p )  the probability density of the fragmentation 
parameters N and p, raising equation (9) and its complex conjugate to the mth power 
and averaging over all values of p ,  N, Cp' and C?-" we arrive at 

3. A stochastic renormalization approach 

In order to avoid the occurrence of an infinity of particles of size 0, the fragmentation 
process should be limited in some way. It  follows that for each step there is a finite 
probability A that the fragmentation process terminates. For scale-invariant systems A 
is the same for all steps. In this case the probability that the fragmentation consists of 
q steps is equal to 

& = ( I - A ) ~ A .  (11) 

The final values of the moments of the Fourier coefficients may be derived by averaging 
over & : 

m 
\I%, ,I; 12"\- 1 -  r L. { L - A J  I ,  - ,\9>/ICi ' l i12"\  " \ IC"  I 

/. (!?I 
9=0  

By combining equations (10) and (12) we get a renormalization group relationship: 

Equation (13) is a discrete analogue of the equations derived by Novikov (1966), 
Shlesinger and Hughes (1981). West and Shlesinger (1989) and West (1990a,b) in 
other physical contexts. If the mean number of fragmentation steps (4) = X q&. = 
(l/A) - 1 is very large, i.e. if 1 - A  is near unity, the first term on the RHS of equation 
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(13) is negligible and equation (13) becomes a 'true' scaling equation which has the 
non-analytic solution 

(len12'")- n- ( l+Hm)  (14) 

where H, is the real root of the transcendental equation 

(1-A) N>1 X N H ~ ~ o ' p Z m ( N ( p ) d p = l .  (15) 

This equation has a single real solution H,. The sign of H ,  is the same as the sign 
of the difference (I-A)-l-(pz"'). In particular, for (1-A)- '=(p2"),  we have H, =O.  

Putting in equation (14) m = 2  and introducing the notation An =2((leHl'))1'2 we 
get a relationship similar to Meloy's law: 

In An -const- (1  + H , )  In n. (16) 

shape is not too high, then equation (16) is equivalent to Meloy's law applied to an 
ensemble of panicles. 

We note that for m = 2  and U' finite, the probabilistic interpretation of (lC,I') 
requires that H ,  > 0; otherwise the relationship (76) is violated and the probability P. 
(equation (70))  is not normalized. 

1Ftl.n Aic-a-oin- 11: I'\-/ l> i s  r..K:^in-+l.. r r r l l l  i P thn FI...-t..lr:-r ,.Ftha --rrirln 
11 U',. " l " p C L " . " L .  \1un1 / \I""l/ 10 "UL,L"C,,L,J ~.II',LI, I.C. L l l L  L.UCL"LLLI"II "L L 1 1 L  p'P1LL"L 

4. Size scaling 

The scale invariance also generates a scaling behaviour for the distribution of particle 
size. Since, as usual, we have considered only the bidimensional representation of the 
particle shape we shall measure the size by the area of a given section: 

We start from an initial probability density B, (S)  which corresponds to the distribution 
of initial shapes. By using equation (8) it is easy to show that two successive sizes S,, 
and Sq-l are related to each other through the relationship 

S 9 = p 2  ri- ,(N0) d8=p2S,-, .  (18) 

The probability density B J S )  corresponding to the qth step results by averaging the 
factor S ( S - p ' S , _ , ) B , _ , ( S , _ , )  over all possible values of p and Sq-, :  

B,(S,)=X r '  5 ~ ( p ) B , - d S , / p ' ) P - ~  dp. (19) 

i:" 

N J o  

The final size distribution results by averaging over q:  

By combining equations ( l l ) ,  (19) and (20) we get a renormalization equation similar 
to equation (13): 
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This integral equation can be solved by means of a Mellin transformation: the solution 
corresponds to the roots of the transcendental equation 

This equation has a single real solution X = X,, which fulfils the condition 1 > X, > 0. 
Unlike the case of equation (13) the complex roots may also have a significant 
contribution to & S ) .  However, as the real parts of the complex roots are less than 
X = X , ,  in the limit 1 - A  + 1 and S + 0 these contributions are negligible. We get 

& S )  - s-xo a s S + O , I - A + l .  (23) 

Thus 6( S )  has a singularity a t  S = 0. Equation (23) implies that the probability density 
of the reciprocal value of size Y = S-' behaves as a statistical fractal as Y+oo. The 
probability density of Y has the asymptotic behaviour Y-c'+H'), with H* = 1- X,. 

5. A branched-chain approach 

In this section we address a very difficult problem: in what sense i s  scaling and 
renormalization as proposed a novel result? Once scale invariance is assumed it is not 
surprising that a power law (equation (16)) comes out of the calculation. Indeed, 
renormalization always implies scaling; hence, it seems that as such finding scaling is 
no result. To answer this question we shall consider a particular fragmentation mechan- 
ism and try to recover the scaling equations derived above. We shall assume that a 
full description of the fragmentation dynamics can be done in terms of a branched-chain 
process. By generalizing the theory of Vlad (1991) the dynamics of the process can be 
described, in terms of the probability density functional 

r E 1 [ r l ( e ) ,  . . . , r M ( e ) ] a r , ( e ) .  . . %,(e), (24a) 

that at the qth fragmentation step there are M particles having sizes between r l ( 0 )  
and r , ( e ) + 8 r l ( 0 ) ,  ..., r M ( e )  and r M ( 0 ) + 8 r M ( O ) .  We have 

In terms of these functionals we can write the evolution equations 
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The rate of fragmentation may be evaluated by combining the theory of Wad (1991) 
with the considerations developed in section 2. We note by p'4'(u) the probability that 
at the qth step a particle breaks into U pieces. Taking into account equation (8) we 
can express f;" as an average of a product of 6-functionals: 

where we have assumed that the probability densities &'(p)  are generally q-dependent. 
In order to make a connection with the one-particle description introduced above 

we shall define the one-particle density functional 

x % - , ( e )  _ _ .  9rM(0)%R(6').  (28)  

By using this functional density we can evaluate the moments of the Fourier coefficients 
through the relationship - 

By combining equations (25)-(29) we can derive a chain of equations for the moments 
of the square modulus (lC~'12'"). The calculations are standard but cumbersome. By 
performing the computations we recover equation (10) only if 

p'"( U) = q( U) =independent of q 

&'(p)  = & ( p )  =independent of q 

f?' = fu =independent of q 

which corresponds to 

The self-similar form of equation (10) was essential for the application of the renormal- 
ized approach. For fragmentation models defined by equations (25)-(27) this equation 
is a consequence of the restrictions (30a)  and (30b) .  The physical significance of these 
restrictions is very clear: they express a condition of homogeneity with respect to the 
discrete time q, i.e. that the fragmentation of a particle into other particles obeys the 
same rules at all times. We have no explanation why the branched chain fragmentation 
processes described by equations (25)-(27) should be time homogeneous; however, 
we note that the condition of time homogeneity is commonly used in Markovian 
dynamics (Van Kampen 1981). 

6. Discussion 

As follows we shall outline some drawbacks and limitations of the above approach, 
A first problem is related to the choice of the origin in writing r = r( e). Although 

this description is commonly used in the literature, and presumably all the results are 
independent of the location of the origin, we were unable to convince ourselves of this. 
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On the other hand, the calculations seem to indicate that the higher moments of 
the distribution, obtained from ( l ~ n 1 2 ' " ) ,  are governed by different exponents for 
different values of m. We do not know whether this is a genuine effect with observable 
consequences or not. If this is the case, it would be more appropriate to compute 
(In A"), rather than A., for comparison with the empirical Meloy's law. 

The analogy to quantum mechanics was quite useful. It allowed us to ascribe a 
probabilistic interpretation to the square modulus of the complex amplitudes ICn12. 
However, it seems that this analogy is too vague and limited. Indeed, the amplitudes 
C, themselves are random variables. This is due to the fact that the initial state may 
correspond to particles having different shapes; moreover, each fragmentation event 
is a source of randomness. Thus, our problem is rather related to quantum statistics, 
which generally corresponds to mixed states. In this context a stochastic analogue of 
the density matrix formalism would be appropriate. 

Other questions concern the significance of the time homogeneity condition intro- 
duced in section 5 .  In the particular case considered, this is a necessary condition for 
the success of the renormalization approach. We do not know whether this is a general 
property or if it is true only for equations (25)-(27). 

Another problem is related to the particle shape. It is not clear whether the above 
scaling laws are related to a geometrical fractal or not. The idea that the fragmentation 
phenomena could generate fractal contours seems to be physically plausible. 

To answer these questions further investigations are necessary. 
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